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Formation of Networks – Crosslinking Strategies

Structure of Networks

Theory of Elasticity

Thermodynamics of Elasticity

The Carnot Cycle

Swelling of Polymer Networks

Outline

Paul J. Flory, Molecular Theory of Rubber Elasticity, Polymer Journal, 1985, 17, 1-12.
T.-S. Lin et al. , revisiting the elasticity theory for real gaussian phantom networks, Macromolecules, 2019, 52, 2685-1694.
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Rubbers / Elastomers

• Easily undergo very large reversible elongations
( ≤ 500-1000 %) at relatively low stresses

Thermoplastic elastomers: behave as rubbers, but can be melt processed

•Are covalently crosslinked, three dimensional networks
•Tg well below room temperature  solid, soft and deformable

Rubber: natural polymer
Elastomer: synthetic material

Usually both are
used interchangeably



strand

junction
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Formation of Networks by Cross-Linking



1. Step polymerization: small molecules with functionality greater than two to form short, 
branched chains.
epoxied (oxiranes) with amines or isocyanates with polyols. 
Schematically:

2. Chain polymerization with multi(≥ 2)functional molecules present
ex.: styrene polymerized with divinyl benzene
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Crosslinking Strategies (1):

M. Carme Coll Ferrer et a. ,Polymer, Volume 49, 
issue 15, 2008, 3279-3287
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3. Postpolymerization reactions, where a linear or branched polymer is crosslinked after 
synthesis is complete
ex.: Vulcanization of rubber with sulfur

4. Use of multifunctional monomer in the simultaneous polymerization and crosslinking of polymers

Crosslinking Strategies (2):
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5.  Radiation crosslinking with an electron beam or gamma irradiation

6.   Physical (= non-covalent) crosslinking: • thermoplastic elastomers
• semi-crystalline polymers at T > Tg
(• amorphous polymers of high MW)

Crosslinking Strategies (3):
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Classes of Elastomers

†EPDM: ethylene-propylene diene monomer
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Structure of Networks

Network with different
strand lengths and mesh 
sizes and dangling ends

Network with different strand
lengths but similar mesh size
(14 segments); no dangling ends

Perfect network with equal 
strand lengths (15 segments),
no ends, loops and entanglements

Networks with trifunctional junction

reality   model



entropic elasticityenthalpic elasticity

strain/
relaxation

Relaxation

Reversible deformation small (ca. 0.1%) high (more than 100%)
Young’s Modulus E high low
Temp. change on strain cooling down heating up
Change of length on heating elongation contraction

Example steel rubber band
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Elasticity



1111

Theory of Rubber Elasticity

Rubber elasticity is entropy driven

σ = retractive stress
α = extension ratio (= L/L0)
n = number of active network segments per unit volume (= ρ/Mc) 

[Mc: number average molecular weight between cross-links]
R = 8,31x107 (dyn cm)/(mol K)

(non-linear: cf. Hooke‘s Law)
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rubber elasticity refers to region 3
between 2 junction points



Thermodynamics of Elasticity

for entropy elastic bodies
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Equation of state for an Elastomer

for ideal elastomer 𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿 𝑇𝑇,𝑝𝑝

= 0

for ideal elastomer 𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿 𝑇𝑇,𝑉𝑉

= 0

f = retractive force
S = entropy
A = Helmholtz free energy (sometimes as F)
G = Gibbs free energy
U = internal energy
H = enthalpy

𝑓𝑓 =
𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿 𝑇𝑇,𝑝𝑝

=
𝛿𝛿𝐻𝐻
𝛿𝛿𝛿𝛿 𝑇𝑇,𝑝𝑝

− 𝑇𝑇
𝛿𝛿𝑆𝑆
𝛿𝛿𝛿𝛿 𝑇𝑇,𝑝𝑝

𝑓𝑓 =
𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿 𝑇𝑇,𝑉𝑉

=
𝛿𝛿𝑈𝑈
𝛿𝛿𝛿𝛿 𝑇𝑇,𝑉𝑉

− 𝑇𝑇
𝛿𝛿𝑆𝑆
𝛿𝛿𝛿𝛿 𝑇𝑇,𝑉𝑉
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Stress – Strain Curves

relationship between the entropy 
and the retractive force is given as:



−
𝛿𝛿𝑆𝑆
𝛿𝛿𝛿𝛿 𝑇𝑇,𝑉𝑉

=
𝛿𝛿𝑓𝑓
𝛿𝛿𝑇𝑇 𝐿𝐿,𝑉𝑉

𝑓𝑓 =
𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿 𝑇𝑇,𝑉𝑉

+ T
𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿 𝐿𝐿,𝑉𝑉

Stress versus elongation for natural rubber, resolved into internal energy and entropic contributions at
(a) constant temperature (b) constant strain
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Equation of state for a single Gaussian chain:

Statistical Thermodynamic of Rubber Elasticity

f is the force to extend the chain to h
Stretching of  a random walk chain 
the retractive force depends on the 
segment length b.
The smaller b (= the larger the 
flexibility of a chain), the larger is f at 
given stress

Extension of a single Gaussian chain from initial end-
to-end distance h0 to final end-to-end distance h.

Single Gaussian chain behaves like a Hook’s law spring with a spring constant 3𝑘𝑘𝑘𝑘
ℎ2

and a zero rest length. The spring stiffer as the temperature increases based on 
entropic nature.

𝑓𝑓 = −𝑇𝑇
𝛿𝛿∆𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝛿𝛿𝛿
=

3𝑘𝑘𝑘𝑘
ℎ2

ℎ =
3𝑘𝑘𝑘𝑘
𝑁𝑁𝑏𝑏2

ℎ
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Affine Network Model

Equation of state for a macroscopic network: ideal network of Gaussian strands   
(affine network)

σ: stress
hi

2

h0
2 : front factor, 

hi
2:        isotropic unstrained end-to-end 

distance in the network
h0

2:        isotropic end-to-end distance for 
a free, relaxed chain 

α = L/L0 extension ratio
n:            number of active network chains 

per unit volume

𝜎𝜎 =
𝛿𝛿𝐹𝐹
𝛿𝛿𝛼𝛼 𝑇𝑇,𝑉𝑉

= 𝑛𝑛𝑛𝑛𝑛𝑛
ℎ𝑖𝑖2

ℎ02
𝛼𝛼 −

1
𝛼𝛼2
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σ = G (α- )1
α2

stress-strain relationships and the modulus of an ideal elastomer:

Conclusions:

1. The modulus increases with temperature, just as with the spring constant of a 
single chain, due to is entropic origin.

2. The modulus increases as a function of crosslinks density, because Mx decreases; 
a ‘tighter’ network is ‘stiffer’.

3.  The modulus is independent of the functionality of crosslinks.

4.  The extensional stress is not a linear function of the strain

Young’s Modulus:

Shear Modulus:    Mx molecular weight between crosslinks

Modulus of the Macroscopic Network:

𝐸𝐸 = 𝐿𝐿
𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿 𝑇𝑇,𝑉𝑉

= 𝑛𝑛𝑛𝑛𝑛𝑛
ℎ𝑖𝑖2

ℎ02
2𝛼𝛼2 +

1
𝛼𝛼

≈ 3𝑛𝑛𝑛𝑛𝑛𝑛
ℎ𝑖𝑖2

ℎ02

𝐺𝐺 = 𝑛𝑛𝑛𝑛𝑛𝑛 ℎ𝑖𝑖
2

ℎ02
= 𝜌𝜌𝜌𝜌𝜌𝜌

𝑀𝑀𝑥𝑥



The “Carnot Cycle” for Elastomers

Carnot Cycle = production of useful work by a gas in a heat engine
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Stress – length steps, two adiabatically and 
two isothermally

1. At L1 and TI a stress is applied stretching
the elastomer adiabatically to L2
 heating up to TII

2. At TII, isotherm contraction to L3
adsorbing heat from surrounding

3. Adiabatic contraction to L4 cooling to TI

4. Increasing length from L4 to L1 isothermally, 
and heat is given off to its surrounding 

1

2

3

4
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Tests of the Theory

A

B
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Phantom Network

In the bulk of the network the junction points are free to fluctuate about their mean position.
 reduction of the net stress

Assumption: 
network has a treelike topology,
every strand bear the same stress when a 
macroscopic strain is applied

Modulus: 𝐺𝐺 = 𝜈𝜈𝑒𝑒
𝑉𝑉

𝑓𝑓 −2
𝑓𝑓

𝑘𝑘𝑘𝑘

f: functionality
 νe: number of elastically effective strands

When the end-to-end distance becomes an appreciable fraction of the contour 
length the Gaussian distribution can be not longer applied. Kuhn and Grün derived a 
distribution function including the so-called inverse Langevin function.
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The Mooney – Rivilin Model

σ = 2C1 (α - 1/α2) + 2C2 ( 1 – 1/α3)

C1, C2 parameter of the material, but not 
function of the deformation

The following form of this equation suggests 
plotting the following quantity versus 1/α:

= 2C1 + 2C2/α

which should give a straight line with 
intercept 2C1 and slope 2C2.

σ
(α – 1/α2)

Considering elastomer as a continuum, based on symmetrical consideration 
following semi-empirical equation of Mooney-Rivlin was found.
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Swelling of Polymer Networks

Lightly crosslinked polymer material is able to imbibe and 
retrain a large volume of solvent

Examples: 

-Hot melt adhesives. The glue is applied as a liquid at high temperature and solidifies
upon cooling. A typical formulation could include about 30% of a PS-PI-PS triblock
copolymer. At low temperature PS segregates from PI to form roughly spherical styrene 
aggregates that acts as crosslinks. At high temperature the segregation is disrupted and 
the polymer flows. The remaining 70% of the material consists of low-molecular weight 
species  diluting the PI and softening the resulting gel, and plasticizing and decreasing 
Tg of PS 

-Soft Contact Lenses. They are a hydrogel network in which the polymer (largely 
cross-inked poly(hydroxymethyl methacrylate) is either water soluble or at least 
water compatible.

1. How changes the expression for the modulus of an ideal elastomer
when solvent is incorporated?

2. How much solvent can a network take up?

Questions:



1. Modulus of a swollen rubber:

The stress in the swollen network is reduced by a factor ν2
1/3 compared to the 

original network, and the modulus is reduced by the same factor when computed 
for constant cross-sectional area

ν2 =V0/V volume fraction of polymer in resulting gel
V0 network volume
V network swollen with solvent to a new volume

νe number of elastically effective strands
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2. Swelling Equilibrium

It can be understood as a simple balance between the osmotic drive to dilute the 
polymer and the entropic resistance to strand extension.

 at equilibrium a determination of χ and the molecular weight between 
crosslinks is possible

Swelling of Polymer Networks

𝜎𝜎 = 𝑘𝑘𝑘𝑘
𝜈𝜈𝑒𝑒
𝑉𝑉0

𝜈𝜈2
1/3 𝛼𝛼 −

1
𝛼𝛼2
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Swelling of Polymer Networks
Equilibrium swelling theory of Flory and Rehner, basic consideration:

Utility: determine n / Mc from swelling experiments

ν2 = polymer volume fraction V0/V
V1 = molar volume of solvent
χ1 = Flory-Huggins interaction parameter
n = number of active network segments / unit volume

Flory-Rehner equation:

1.  Entropy change due to mixing of polymer and solvent. This entropy change is positive
and favors swelling

2. Swelling reduces the number of possible chain conformations. The corresponding
entropy change is negative and opposes swelling

3. Heat of mixing (∆H) of polymer and solvent: can be positive, negative or zero. Usually
slightly positive, which opposes mixing

− 𝑙𝑙𝑙𝑙 1 − 𝜈𝜈2 + 𝜈𝜈2 + 𝜒𝜒1𝜈𝜈22 = 𝑉𝑉1𝑛𝑛 𝜈𝜈2
1/3 −

𝜈𝜈2
2
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Styrene-isoprene-styrene and styrene-1,2-butadiene-styrene ABA triblock copolymers 
with short styrene blocks are useful as thermoplastic elastomers (Cariflex, Kraton, 
Soloprene, Stereon)

Thermoplastic elastomers behave as elastomers at ambient temperatures but are 
thermoplastic at elevated temperatures (T > Tg,PS), where theycan be molded and 
remolded

The polystyrene blocks aggregate to form
glassy (hard) domains that physically crosslink
the rubbery (soft) polydiene blocks

http://www.kraton.com/

Thermoplastic Elastomers
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Summary

1. Analysis of rubber elasticity via macroscopic thermodynamics is relatively 
straightforward, the main new ingredient being the incorporation of the work 
of deformation into the free energy. An ideal elastomer is defined as one for 
which the force resisting deformation is entirely entropic, which is a reasonable 
approximation for many rubber materials.

2. The molecular basis of rubber elasticity rests in the reduction of conformational 
degrees of freedom when a single Gaussian chain is extended. A single Gaussian 
chain acts as a Hooke’s law spring, with a stiffness that is proportional to absolute 
temperature.

3. Straightforward expressions for the force required to deform an ideal elastomer
are obtained by modeling the network as a collection of Gaussian strands and be 
making an assumption as to how the macroscopic deformation is transmitted to 
each strand. The resulting shear and extensional moduli are proportional to the 
number of strands per unit volume.

4. Networks or gels are often capable of absorbing more than 100 times their own 
weight in solvent, a phenomenon that is central to many applications, and that can 
be understood as a simple balance between the osmotic drive to dilute the polymer 
and the entropic resistance to strand extension.
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